首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Levels of selected potential harmful elements (PHEs) in soils and vegetables used in diet of the population living in the surroundings of the Estarreja Chemical Complex (Portugal)
Institution:1. Southern Federal University, Rostov-on-Don 344006, Russia;2. Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pushchino, 142290, Russia;1. Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;2. GOVCOPP, Investigation Unit for Governance, Competitiveness and Public Policy, Portugal;3. Department of Economy, Management and Industrial Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;4. CESAM, Centre for Environmental and Marine Studies, Portugal
Abstract:This study was carried out to analyze the distribution and soil–plant transfer of selected potential harmful elements (PHEs: As, Hg and Zn) in soils and in two edible horticultural crops (cabbage, Brassica oleracea L., and tomato, Lycopersicon esculentum Mill). randomly sampled in kitchen gardens/small farms around one of the most important and old Portuguese industrial areas (Estarreja Chemical Complex-ECC). The results show that 46% and 11.5% of the soils present high total As (12–532 mg/kg) and Hg (6.6–13.65 mg/kg) concentrations that exceed protective health Canadian soil quality guidelines. Soil As and Zn available fractions are also of concern for groundwater and crops contamination as more than 84% of the samples were above the trigger value proposed by the German legislation for both elements (0.4 and 2 mg/kg, respectively). In the horticultural crops the cabbage leaves concentrate more the PHEs (max.: 3.5, 0.08 and 746 mg/kg dw for As, Hg and Zn, respectively) than the tomato fruit (max.: 0.4, 0.02 and 82 mg/kg dw, respectively). The highest concentration of the study PHEs in soils and horticultural crops were found near sewage outlets that are chiefly related to historical industrial activities mostly from arsenopyrite roasting and a chloralkali plant. The values of estimated bioaccumulation and bioconcentration coefficients suggested exclusion mechanisms for transfer of As to edible cabbage and tomato tissues and cabbage Zn tolerance capacity. The concentration of the PHEs in the edible horticultural crops tissues were not directly related with respective soil total concentration or available fractions, specially for As and Hg. Sampling locations with the highest concentrations of As, Hg, Zn in soil and vegetable foodstuffs should be sites to foregoing research and human daily intakes should be investigated in order to evaluate potential health risks.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号