首页 | 本学科首页   官方微博 | 高级检索  
     


An eddy-driven abyssal circulation in a bowl-shaped basin due to deep water formation
Authors:Yutaka Yoshikawa
Affiliation:1. Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga Park, Kasuga, Fukuoka, Japan
Abstract:Numerical experiments were performed to investigate the effects of eddies generated in deep water formation processes on an abyssal circulation in a closed bowl-shaped basin. Two sets of experiments were performed. One set was eddy-restricted experiments in which only a volume-driven (upwelling-driven) circulation was simulated and the other set was eddy-permitted experiments in which both a volume-driven circulation and an eddy-driven circulation were simulated. In the two layer experiment where the lower layer water is formed, a mean along-slope current is formed in the lower layer for both the eddy-restricted and eddy-permitted experiments. The direction of the current was not unique in the eddy-restricted experiment, but it was cyclonic in the eddy-permitted experiment. In the three layer experiments where water of the intermediate layer is formed, the mean along-slope current in the lowest layer is negligibly small in the eddy-restricted experiment, while it is large and cyclonic in the eddy-permitted experiment. The driving forcings of the eddy-driven circulation are quantified in terms of eddy fluxes of relative vorticity (Reynolds stress) and layer thickness (bolus velocity). These terms increase as the volume of the newly formed water increases, but they do not change greatly with the slope height. The magnitude of these terms changes with the slope width, but the sum of these terms does not vary greatly. As a result, the intensity of the eddy-driven circulation depends primarily on the volume of newly formed water. These dependences of eddy fluxes were interpreted using downgradient diffusion of potential vorticity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号