首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geology and geochemistry of telluride-bearing Au deposits in the Pingyi area, Western Shandong, China
Authors:H-B Hu  J-W Mao  S-Y Niu  Y-F Li  M-W Li
Institution:(1) China University of Geosciences, Beijing, People’s Republic of China;(2) Shijiazhuang University of Economics, Shijiazhuang, Hebei, People’s Republic of China
Abstract:Summary Telluride-bearing gold deposits of the Pingyi area, western Shandong, China, are located on the southeastern margin of the North China Craton. There are two main types of deposits: (i) mineralized cryptoexplosive breccia, e.g., Guilaizhuang; and (ii) stratified, finely-disseminated mineralization hosted in carbonate rocks, e.g., Lifanggou and Mofanggou deposits. In Guilaizhuang, the cryptoexplosive breccia is formed within rocks of the Tongshi complex and Ordovician dolomite. The mineralization is controlled by an E–W-trending listric fault. Stratified orebodies of the Lifanggou and Mofanggou deposits are placed along a NE-trending, secondary detachment zone. They are hosted within dolomitic limestone, micrite and dolomite of the Early-Middle Cambrian Changqing Group. The mineralization in the ore districts is considered to be related to the Early Jurassic Tongshi magmatic complex that formed in a continental arc setting on the margin of the North China Craton. The host rocks are porphyritic and consist predominantly of medium- to fine-grained diorite and pyroxene (hornblende)-bearing monzonite. SHRIMP U–Pb zircon dating of diorites give a 206Pb/238U weighted mean age of 175.7 ± 3.8 Ma. This is interpreted as representing the crystallization age of the Tongshi magmatic complex. Considering the contact relationships between the magmatic and host sedimentary rocks, as well as the genetic link with the deposits, we conclude that this age is relevant also for the formation of mineralization in the Pingyi area. We hence consider that the deposits formed in the Jurassic. The principal gold minerals are native gold, electrum and calaverite. Wall-rock alteration comprises pyritization, fluoritization, silicification, carbonatization and chloritization. Fluid inclusion studies indicate that all the analyzed inclusions are of two-phase vapor–liquid NaCl–H2O type. Homogenization temperatures of the fluid inclusions vary from 103 °C to 250 °C, and the ice melting temperatures range from −2.5 °C to −13.5 °C, corresponding to a salinity range of 4.65 to 17.26 wt.% NaCl equiv. The δ34S values of pyrite associated with gold mineralization exhibit a narrow range of −0.71 to + 2.99‰, implying that the sulfur was probably derived from the mantle and/or dioritic magma. The δ13CPDB values of the fluid inclusions in calcite range from −7.3 to 0.0‰. The δ18OSMOW values of vein quartz and calcite range from 11.5 to 21.5‰, corresponding to δ18Ofluid values of −1.1 to 10.9‰; δD values of the fluid inclusions vary between −70 and −48‰. The isotope data for all three deposits suggest mixing of ore-forming fluids derived from the mantle and/or magma with different types of fluids at shallow levels. Pressure release and boiling of the fluids, as well as fluid-rock interaction (Lifanggou and Mofanggou) and mixing of magmatically-derived fluids with meteoritic waters (Guilaizhuang) played an important role in the ore-forming processes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号