首页 | 本学科首页   官方微博 | 高级检索  
     检索      


EMIC Intercomparison Project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling
Authors:V Petoukhov  M Claussen  A Berger  M Crucifix  M Eby  A V Eliseev  T Fichefet  A Ganopolski  H Goosse  I Kamenkovich  I I Mokhov  M Montoya  L A Mysak  A Sokolov  P Stone  Z Wang  A J Weaver
Institution:1. Potsdam Institute for Climate Impact Research, ?, Germany
2. Institut d‘Astronomie et de Géophysique Georges Lema?tre, Université Catholique de Louvain, ?, Belgium
3. Hadley Centre for Climate Prediction and Research, Met Office, Exeter Devon, UK
4. School of Earth and Ocean Sciences, University of Victoria, ?, Canada
5. A.M.Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, ?, Russia
6. Department of Atmospheric Sciences, Joint Institute for the Study of the Atmosphere and the Oceans, University of Washington, Seattle, USA
7. Dpto. Astrofisica y Ciencias de la Atmosfera, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, ?, Spain
8. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada
9. Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, ?, USA
10. Department of Earth, Atmosphere and Planetary Science, Massachusetts Institute of Technology, ?, USA
Abstract:An intercomparison of eight EMICs (Earth system Models of Intermediate Complexity) is carried out to investigate the variation and scatter in the results of simulating (1) the climate characteristics at the prescribed 280 ppm atmosphere CO2 concentration, and (2) the equilibrium and transient responses to CO2 doubling in the atmosphere. The results of the first part of this intercomparison suggest that EMICs are in reasonable agreement with the present-day observational data. The dispersion of the EMIC results by and large falls within the range of results of General Circulation Models (GCMs), which took part in the Atmospheric Model Intercomparison Project (AMIP) and Coupled Model Intercomparison Project, phase 1 (CMIP1). Probable reasons for the observed discrepancies among the EMIC simulations of climate characteristics are analysed. A scenario with gradual increase in CO2 concentration in the atmosphere (1% per year compounded) during the first 70 years followed by a stabilisation at the 560 ppm level during a period longer than 1,500 years is chosen for the second part of this intercomparison. It appears that the EMIC results for the equilibrium and transient responses to CO2 doubling are within the range of the corresponding results of GCMs, which participated in the atmosphere-slab ocean model intercomparison project and Coupled Model Intercomparison Project, phase 2 (CMIP2). In particular EMICs show similar temperature and precipitation changes with comparable magnitudes and scatter across the models as found in the GCMs. The largest scatter in the simulated response of precipitation to CO2 change occurs in the subtropics. Significant differences also appear in the magnitude of sea ice cover reduction. Each of the EMICs participating in the intercomparison exhibits a reduction of the strength of the thermohaline circulation in the North Atlantic under CO2 doubling, with the maximum decrease occurring between 100 and 300 years after the beginning of the transient experiment. After this transient reduction, whose minimum notably varies from model to model, the strength of the thermohaline circulation increases again in each model, slowly rising back to a new equilibrium.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号