首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Processes and timescales in the evolution of a chemically zoned trachyte: Fogo A,Sao Miguel,Azores
Authors:E Widom  H -U Schmincke  J B Gill
Institution:(1) Board of Earth Sciences, UC, 95064 Santa Cruz, CA, USA;(2) GEMOMAR, Christian-Albrechts-Universität, W-2300 Kiel 14, FRG;(3) Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd, NW, 20015 Washington, DC, USA
Abstract:U-series disequilibria analyses have been combined with chemical and petrographic analyses in order to assess both the timescales and processes involved in the formation of the chemically zoned Fogo A trachytes. Least squares major element modelling demonstrates that the mafic trachytes could have evolved from a parental alkali basalt via trachybasalt with sim70% fractionation of augite (35–36%), plagioclase (23%), magnetite (16%), kaersutite (15%), olivine (8%) and apatite (2–3%). Derivation of the mafic trachytes from a basanite parent is inconsistent with calculated fractionation paths. Major and trace element variations in 25 pumice samples collected from throughout the stratigraphic extent of the Fogo A deposit show that the trachytes represent the inverted, extrusive equivalent of a strongly chemically zoned magma chamber. The zonation is attributed to 70–75% Rayleigh fractional crystallization of the observed phenocryst phases. Wallrock assimilation and magma mixing did not contribute significantly to the observed chemical trends. The maximum age of the Fogo A trachytic magma based on radioactive disequilibria between 230Th and 238U is 300000 years. However, a calculated model age suggests that the time of evolution of the Fogo A trachytes from a parent alkali basalt is only 90000 years. Constant element variations and Th-isotopic ratios in Fogo C, Fogo A and 1563 A.D. trachytes suggest that a single long-lived trachytic magma chamber has been the source of at least the past 15.2 Ka of trachytic volcanism from Agua de Pao. After each eruption an evolved cupola reformed and became zoned prior to the next eruption. The maximum time necessary to form the zonation is 4600 years, the time between the Fogo A and 1563 A.D. eruptions. Low (226Ra)/(230Th)i ratios in the Fogo A and 1563 A.D. trachytes suggest that alkali feldspar fractionation continued up to the time of the respective eruptions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号