首页 | 本学科首页   官方微博 | 高级检索  
     


Coexisting amphiboles in an eclogite from the Western Alps: new constraints on the miscibility gap between sodic and calcic amphiboles
Authors:B. REYNARD,M. BALLÈ  VRE
Affiliation:Laboratoire de Minéralogie Physique et Laboratoire de Tectonique, Centre Armoricain d'Etude Structurale des Socles, Universitéde Rennes 1, 35042 Rennes Cedex, France
Abstract:Abstract Crystal-chemical relationships between coexisting sodic and calcic amphiboles have been studied in eclogitic metagabbros from the Aosta Valley, Western Alps. Textural analysis gives evidence of three successive high-pressure parageneses:
1. Pre-kinematic high-grade blueschist assemblages, preserved as polymineralic inclusions in garnet cores and made of glaucophane and actinolite (stage A).
2. Synkinematic eclogite assemblages, composed of garnet + omphacite + glaucophane ± actinolite ± white mica ° Clinozoisite + quartz + rutile (stage B).
3. Post-kinematic epitactic overgrowths of barroisitic amphibole on glaucophane and actinolite (stage C).
P–T conditions of the eclogitic metamorphism have been estimated at around 500–550°C, 16 kbar.
Glaucophane and actinolite coexist as discrete grains in stage A and B assemblages. This texture and the chemistry of the amphiboles unambiguously denotes the existence of a miscibility gap between sodic and calcic amphiboles (from NaM4= 0.80 in actinolite to NaM4= 1.70 in glaucophane at T = 500–550°C). A comparison with published analyses allows a new solvus along the glaucophane–actinolite join to be drawn.
The later barroisitic amphibole (stage C) exhibits strong chemical zonation indicating disequilibrium growth. This amphibole cannot either be used to define a miscibility gap with glaucophane or actinolite or be considered as an intermediate stage between these two end-members.
Keywords:amphiboles    eclogite    miscibility gaps    Western Alps
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号