首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions
Authors:Thorsten Geisler  Marcus Ulonska  Helmut Schleicher  Robert T Pidgeon  Wilhelm van Bronswijk
Institution:Mineralogisch-Petrographisches Institut der Universit?t Hamburg, Grindelallee 48, 20146 Hamburg, Germany,
School of Applied Geology, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA, Australia,
School of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA, Australia,
Abstract:We report results of hydrothermal experiments on four alluvial zircons from Sri Lanka, which cover a wide range of radiation damage, at 450 °C and 1.3 kbar for 744 h with 2 M CaCl2 solution as reactive fluid. After the hydrothermal treatment, the most metamict samples show micrometer-thick reaction rims, which surround apparently unreacted zircon, as revealed by cathodoluminescence (CL) and Nomarski differential interference contrast (NDIC) images. These rims have sharp, curved, and transgressive boundaries with unreacted zircon and are, in some cases, spread out along cracks. The thickness of reaction rims increases with increasing cumulated !-dosage of the starting materials. The reaction rims are strongly enriched in Ca (up to 7000 ppm) and a water species and depleted in radiogenic Pb, Zr, and Si, as revealed by electron microprobe analyses. A significant Th loss from the reaction rims was detected in the case of the most metamict sample, whereas U remained in the structure. FT-infrared spectrometry and X-ray diffraction measurements revealed that the bulk run products were recrystallized. Using micro-Raman spectrometry, we were able to demonstrate that differential recrystallization took place. The reaction rims are strongly recrystallized, whereas the unreacted grain interiors underwent only minor recrystallization. Recrystallization of the rims is accompanied by an enhancement of the integral CL intensity. It is suggested that recrystallization in the reaction rims was catalyzed by water infiltration and ion exchange and prevented significant congruent zircon dissolution under the given experimental conditions. Previous zircon studies have shown that (1) a transgressive morphology, (2) a reduced Th-U ratio, and (3) an enhanced CL emission are also characteristics of rims in zircons from high-grade metamorphic rocks. Based on these similarities between natural and experimentally produced rims, it is suggested that leaching-catalyzed recrystallization is an important alteration process in zircon under wet geological conditions and can account for many complex core-rim structures found in natural zircons. Furthermore, the strong enrichment of Ca in the reaction rims supports previous assumptions that high Ca concentrations in natural zircons are of secondary origin. It is suggested that lower U-Pb concordia intercept ages obtained from single-phase zircons with high Ca contents date a leaching event.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号