首页 | 本学科首页   官方微博 | 高级检索  
     

基于GIS与SDM技术的可视化空间数据分类研究
引用本文:贾泽露,张彤. 基于GIS与SDM技术的可视化空间数据分类研究[J]. 测绘科学, 2007, 32(1): 115-118
作者姓名:贾泽露  张彤
作者单位:中南大学地学与环境工程学院,长沙,410083;美国圣地亚哥州立大学地理系,圣地亚哥,CA92182-4493
基金项目:国家自然科学基金项目(40271088),教育部留学人员回国基金资助项目(152174),中南大学文理科学研究基金项目(0601057)
摘    要:提出将GIS与可视化空间数据挖掘技术之集成的基本框架。在此基础上,基于VisualC++6.0和Ma-pObject2.0组件技术设计和开发了一个可视化交互空间数据挖掘分类系统,系统采用决策树方法和贝叶斯网络作为数据挖掘方法的基本算法,采用训练与学习相结合实现空间数据的分类。文中用实例数据对系统性能、算法和规则有效性进行了验证。结果表明,该系统是一个适用的、可扩展的可视化交互空间数据挖掘工具,系统能够实现数据挖掘实时动态的交互控制,实现了数据挖掘过程的可视化、挖掘模型的可视化和结果的可视化显示、可视化思考、可视化分析与评价。

关 键 词:GIS  空间数据挖掘  决策树  贝叶斯网络  地理可视化  交互  空间分类
文章编号:1009-2307(2007)01-0115-04
修稿时间:2006-02-26

Study on Spatial Data Classification Based on Integration Between GIS and Spatial Data Mining
JIA Ze-lu,ZHANG Tong. Study on Spatial Data Classification Based on Integration Between GIS and Spatial Data Mining[J]. Science of Surveying and Mapping, 2007, 32(1): 115-118
Authors:JIA Ze-lu  ZHANG Tong
Abstract:A brief introduction of GIS and spatial data mining as well as their integration are proposed.Then a spatial data mining prototype system used to classify spatial data based on Visual C 6.0 and MapObject2.0 are designed and developed,which use Decision Tree and Bayesian Networks as its basic algorithm to realize spatial data mining,and integrate training and learning to classify spatial data.Some test has been done to verify the capability of the system and the validity of these algorithms and rules.The result indicates that this prototype system is a practical and extensible Visual Interactive Spatial Data Mining tool.It can realize the interactive control of data mining dynamically and real-timely.At the same time,the process,models and result of data mining are displayed,thought and analyzed as well as evaluated visually.
Keywords:geographical information system  spatial data mining  decision tree  bayesian networks  geo-visualization  interaction  spatial classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号