首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The gradual subduction-collision evolution model of Proto-South China Sea and its control on oil and gas
Authors:Xiaojun Xie  Wu Tang  Gongcheng Zhang  Zhigang Zhao  Shuang Song  Shixiang Liu  Yibo Wang  Jia Guo
Institution:China National Offshore Oil Corporation (CNOOC) Research Institute Co., Ltd., Beijing 100028, China
Abstract:This study involved outcrop, drilling, seismic, gravity, and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea (PSCS) and establish its evolution model. The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo, both of which have the characteristics of gradually changing younger from west to east, and are direct signs of subduction and collision of PSCS. At the same time, the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo, the Kuching belt, Sibu belt, and Miri belt. The sedimentary formation of northern Borneo is characterized by a three-layer structure, with the oceanic basement at the bottom, overlying the deep-sea flysch deposits of the Rajang–Crocker group, and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top, recording the whole subduction–collision–orogeny process of PSCS. Further, seismic reflection and tomography also confirmed the subduction and collision of PSCS. Based on the geological records of the subduction and collision of PSCS, combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea, we establish the “gradual” subduction-collision evolution model of PSCS. During the late Eocene to middle Miocene, the Zengmu, Nansha, and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault, which collided with the Borneo block and Kagayan Ridge successively from the west to the east, forming several foreland basin systems, and PSCS subducted and closed from the west to the east. The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea (SSCS) mainly in three aspects. First, the “gradual” closure process of PSCS led to the continuous development of many large deltas in SSCS. Second, the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS. Macroscopically, the distribution and scale of deltas controlled the distribution and scale of source rocks, forming two types of source rocks, namely, coal measures and terrestrial marine facies. Microscopically, the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks. Third, the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS. Meanwhile, the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries, resulting in a huge amount of oil and gas discoveries in the basin of SSCS. Meanwhile, the difference of macerals of source rocks mainly controlled the difference of oil and gas generation, forming the oil and gas distribution pattern of “nearshore oil and far-shore gas”.
Keywords:Proto-South China Sea  gradual subduction-collision  evolution model  oil and gas distribution  southern South China Sea  Borneo
点击此处可从《海洋学报(英文版)》浏览原始摘要信息
点击此处可从《海洋学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号