首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The inverse problem for heat flow data in the presence of thermal conductivity variations
Authors:Stephen P Huestis
Institution:Department of Geology, University of New Mexico, Albuquerque, NM 87131, USA
Abstract:Summary. We demonstrate a method of performing linear programming optimizations of functionals of subsurface temperature, when thermal conductivity is a known piecewise-constant function. Data comprise heat flow measurements on the flat isothermal surface of this structure, within which heat transfer is by steady-state conduction. Two-dimensionality is assumed. The approach involves establishing constraints which demand the continuity of temperature and the normal component of heat flow across all internal boundaries. These unknown functions are expanded as truncated Fourier series whose coefficients become unknowns of the linear programming solution vector; linear relations are established between these coefficients which guarantee harmonicity of temperature in each region of uniform conductivity, as well as the continuity requirements. Variations of the formalism are detailed for three simple types of geometry. As an example the method is applied to a heat flow data set from Sass, Killeen & Mustonen over the Quirke Lake Syncline of Ontario, Canada.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号