首页 | 本学科首页   官方微博 | 高级检索  
     

结合贝叶斯理论和MRF的主被动遥感数据协同分类
引用本文:余凡,李海涛,万紫. 结合贝叶斯理论和MRF的主被动遥感数据协同分类[J]. 遥感学报, 2012, 16(4): 809-825
作者姓名:余凡  李海涛  万紫
作者单位:中国测绘科学研究院地理空间信息工程国家测绘局重点实验室, 北京 100830;中国测绘科学研究院地理空间信息工程国家测绘局重点实验室, 北京 100830;中国科学院遥感应用研究所, 北京 100101
基金项目:国家自然科学基金(编号: 41101321);国家重点基础研究发展计划(973计划) (编号: 2007CB714407);中国测绘科学研究院科研基本业务经费(编号: 7771023,7771017)
摘    要:提出一种基于贝叶斯理论和马尔科夫随机场MRF(Markov Random Fields)的主被动遥感数据协同分类方法。该方法依据光学与微波遥感数据在地物提取中的各自优势,首先对ASAR后向散射系数进行入射角归一化,然后构建一种基于贝叶斯理论和MRF的分类器,以归一化后的ASAR双极化数据与TM7个波段共同参与分类。分别对ASAR入射角归一化的有效性和主被动协同的必要性进行验证,结果表明,采用本文方法的分类精度达到89.4%,较未进行角度校正的主被动数据协同分类的精度提高了4.1%,较单独TM分类的精度提高了11.5%,体现出主被动遥感数据协同在分类上的潜力。

关 键 词:主被动遥感  入射角归一化  贝叶斯理论  马尔科夫随机场(MRF)
收稿时间:2011-07-28
修稿时间:2011-10-18

Synthesis of multi-source remote sensing data for classification based on Bayesian theory and MRF
YU Fan,LI Haitao and WAN Zi. Synthesis of multi-source remote sensing data for classification based on Bayesian theory and MRF[J]. Journal of Remote Sensing, 2012, 16(4): 809-825
Authors:YU Fan  LI Haitao  WAN Zi
Affiliation:Key Laboratory of Geo-Informatics of State Bureau of Surveying and Mapping, Chinese Academy of Surveying and Mapping, Beijing 100830, China;Key Laboratory of Geo-Informatics of State Bureau of Surveying and Mapping, Chinese Academy of Surveying and Mapping, Beijing 100830, China;Institute of Remote Sensing Applications, Chinese Academy of Science, Beijing 100101, China
Abstract:The iterative technique for multi-source remote sensing data classification is presented in accordance with the advantages of multi-source data in feature extraction. In the method, the Advanced Synthetic Aperture Radar (ASAR) backscatter coefficient is normalized by the incident angle at first. Then, a classifier based on the Bayesian theory and Markov random fields (MRF) is developed, and the Vertical-Vertical, Vertical-Horizontal (VV, VH) polarizations of ASAR and all the seven TM bands are used as inputs of the classifier to get the class labels of each pixel of the images. Finally, the method is validate, the necessities of normalization and integration of TM and ASAR are discussed. The results show that the precision of classification in this paper is 89.4%, which is increased by 4.1% and 11.5% compared with the methods of without normalization and using single TM data. These analyses illustrate that synthesis of multi-souce remote sensing data is an efficient classification method.
Keywords:multi-source remote sensing  normalization  Bayesian theory  Markov random fields (MRF)
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号