首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of a flaring loop after injection of energetic electrons
Authors:André Duijveman  Boris V Somov  André R Spektor
Institution:1. The Astronomical Institute at Utrecht, Utrecht, The Netherlands
2. P.N. Lebedev Physical Institute of the Academy of Sciences, Moscow, U.S.S.R.
3. Radioastrophysical Observatory of the Latvian Academy of Sciences, Riga, U.S.S.R.
Abstract:For the November 5, 1980 flare it is investigated how the plasma in a large flaring loop responds to the injection of energetic electrons. Observations are compared with the results of a one-dimensional numerical simulation. For the simulation it is assumed that at the time the injection is started, the plasma is in an equilibrium state with a constant pressure along the loop and conductive heating compensated by radiative losses. Especially important for the evolution of the impulsively heated plasma is the penetration depth of the fast electrons compared to the depth of the transition layer. Both parameters are known from the observations. The injected energy is 2.6 × 1011 ergs cm ?2 in 30 s (as derived from the hard X-ray observations) and computations show that the high temperature plasma of the loop responds to it with upward motions of about 50 km s?1, i.e. with velocities much smaller than the ion sound speed (≈ 500km s?1). The heating of the plasma due to the absorption of beam energy can be understood using a constant density approximation. After the heating phase the plasma returns in about 5 min to its initial state by conductive cooling. The downward conducted energy is radiated away in the transition zone. The numerical simulation shows that impulsive heating by non-thermal electrons only does not explain the observed large increase in the density of the loop during the flare. It is therefore required that continuous energy and/or mass input occur after the impulsive phase.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号