首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Network-based geometry-free three carrier ambiguity resolution and phase bias calibration
Authors:Yanming Feng  Chris Rizos
Institution:(1) Queensland University of Technology, GPO Box 2434, Brisbane, QLD, Q4001, Australia;(2) The University of New South Wales, Sydney, NSW, 2052, Australia
Abstract:Continuously operating reference stations (CORS) are increasingly used to deliver real-time and near-real-time precise positioning services on a regional basis. A CORS network-based data processing system uses either or both of the two types of measurements: (1) ambiguity-resolved double-differenced (DD) phase measurements, and (2) phase bias calibrated zero-differenced (ZD) phase measurements. This paper describes generalized, network-based geometry-free models for three carrier ambiguity resolution (TCAR) and phase bias estimation with DD and ZD code and phase measurements. First, the geometry-free TCAR models are constructed with two Extra-Widelane (EWL)/Widelane (WL) virtual observables to allow for rapid ambiguity resolution (AR) for DD phase measurements without distance constraints. With an ambiguity-resolved WL phase measurement and the ionospheric estimate derived from the two EWL observables, an additional geometry-free equation is formed for the third virtual observable linearly independent of the previous two. AR with the third geometry-free model requires a longer period of observations for averaging than the first two, but is also distance-independent. A more general formulation of the geometry-free model for a baseline or network is also introduced, where all the DD ambiguities can be more rigorously resolved using the LAMBDA method. Second, the geometry-free models for calibration of three carrier phase biases of ZD phase measurements are similarly defined for selected virtual observables. A network adjustment procedure is then used to improve the ZD phase biases with known DD integer constraints. Numerical results from experiments with 24-h dual-frequency GPS data from three US CORS stations baseline lengths of 21, 56 and 74 km confirm the theoretical predictions concerning AR reliability of the network-based geometry-free algorithms.
Contact Information Chris RizosEmail:
Keywords:GNSS  Three carrier ambiguity resolution  Phase bias calibration  Network adjustment
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号