首页 | 本学科首页   官方微博 | 高级检索  
     

中尺度自忆模式在强降水预报中的应用
引用本文:贾晓静,封国林,曹鸿兴. 中尺度自忆模式在强降水预报中的应用[J]. 大气科学, 2003, 27(2): 265-272. DOI: 10.3878/j.issn.1006-9895.2003.02.13
作者姓名:贾晓静  封国林  曹鸿兴
作者单位:1.国家气象中心,北京,100081
基金项目:国家自然科学基金资助项目40275031和40231006及国家重点基础研究发展规划项目G1999043408共同资助
摘    要:根据大气自忆性原理提出的回溯时间积分格式应用于中尺度格点模式MM5,构建了中尺度自忆模式SMM5并做了短期强降水预报的实验.结果表明,SMM5模式与MM5模式相比,由于使用了多个时刻的场资料,预报精度有了明显的提高, SMM5预报的最大雨区的中心位置与降水量也比MM5更接近实际观测场.

关 键 词:中尺度数值模式   短期天气预报   降水

Use of the Mesoscale Self-Memorization Model in the Heavy Rainfall Forecasting Experiments
Jia Xiaojing,Feng Guolin and Cao Hongxing. Use of the Mesoscale Self-Memorization Model in the Heavy Rainfall Forecasting Experiments[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(2): 265-272. DOI: 10.3878/j.issn.1006-9895.2003.02.13
Authors:Jia Xiaojing  Feng Guolin  Cao Hongxing
Abstract:In view of the fact that the atmospheric motion is an irreversible process, a memory function which can recall the observation data in the past has been introduced. Retrospective time integration scheme contains historical information so this scheme adapts to mesoscale weather forecast. The purpose of this paper is to apply this scheme to MM5 model and validate the efficiency of this scheme. Based on the atmospheric self-memorization principle, the retrospective time integration scheme in a mesoscale numerical model is developed which is called SMM5, and the experimental results are compared with the kernel model MM5. It shows that because of using information of several history fields, SMM5 can improve the prediction accuracy. As to the rainfall field, both the precipitation areas and precipitation intensities of SMM5 is more similar to the observed field than that of MM5.
Keywords:numerical weather prediction  short-range weather forecast  rainfall
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号