首页 | 本学科首页   官方微博 | 高级检索  
     


Probabilistic forecasting of drought: a hidden Markov model aggregated with the RCP 8.5 precipitation projection
Authors:Si?Chen,Ji?Yae?Shin,Tae-Woong?Kim  author-information"  >  author-information__contact u-icon-before"  >  mailto:twkim@hanyang.ac.kr"   title="  twkim@hanyang.ac.kr"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile
Affiliation:1.Department of Civil and Environmental Engineering,Hanyang University,Seoul,Republic of Korea;2.Department of Civil and Environmental Engineering,Hanyang University,Ansan,Republic of Korea
Abstract:The creeping characteristics of drought make it possible to mitigate drought’s effects with accurate forecasting models. Drought forecasts are inevitably plagued by uncertainties, making it necessary to derive forecasts in a probabilistic framework. In this study, we proposed a new probabilistic scheme to forecast droughts that used a discrete-time finite state-space hidden Markov model (HMM) aggregated with the Representative Concentration Pathway 8.5 (RCP) precipitation projection (HMM-RCP). The standardized precipitation index (SPI) with a 3-month time scale was employed to represent the drought status over the selected stations in South Korea. The new scheme used a reversible jump Markov chain Monte Carlo algorithm for inference on the model parameters and performed an RCP precipitation projection transformed SPI (RCP-SPI) weight-corrected post-processing for the HMM-based drought forecasting to perform a probabilistic forecast of SPI at the 3-month time scale that considered uncertainties. The point forecasts which were derived as the HMM-RCP forecast mean values, as measured by forecasting skill scores, were much more accurate than those from conventional models and a climatology reference model at various lead times. We also used probabilistic forecast verification and found that the HMM-RCP provided a probabilistic forecast with satisfactory evaluation for different drought categories, even at long lead times. In a drought event analysis, the HMM-RCP accurately predicted about 71.19 % of drought events during the validation period and forecasted the mean duration with an error of less than 1.8 months and a mean severity error of <0.57. The results showed that the HMM-RCP had good potential in probabilistic drought forecasting.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号