首页 | 本学科首页   官方微博 | 高级检索  
     


Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling
Authors:Michael Schwarz  Andreas Henk
Affiliation:(1) Geologisches Institut, University of Freiburg, Germany
Abstract:The evolution and geometry of the Tertiary Upper Rhine Graben were controlled by a continually changing stress field and the reactivation of pre-existing crustal discontinuities. A period of WNW-ESE extension in the late Eocene and Oligocene was followed by lateral translation from the early Miocene onwards. This study utilizes 3D finite element techniques to simulate extension and lateral translation on a lithospheric scale. Brittle and creep behaviour of lithospheric rocks are represented by elastoplasticity and thermally activated power-law viscoplasticity, respectively. Contact elements allocated with cohesion and frictional coefficients are used to describe pre-existing zones of weakness in the elastic-brittle field. Our results suggest that (1) extension is accommodated along listric border faults to midcrustal depth of 15–16 km. Beneath, pure shear stretching occurs without a need for localized shear zones in lower crust and upper mantle. (2) Ductile flow at midcrustal depth across the graben accounts for the pronounced halfgraben morphology. Thereby, the shape of the border faults, their frictional coefficients, and sedimentary loads have profound effects on the rate of ductile flow across the graben. (3) Horizontal extension of 8–8.5 km and sinistral displacement across the rift of 3–4 km are needed to accommodate the observed sediment thickness.
Keywords:Upper Rhine Graben  Basin evolution  3D finite element modelling  Contact elements  Ductile flow
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号