首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic Tree Identification and Diameter Estimation Using Single Scan Terrestrial Laser Scanner Data in Central Indian Forests
Authors:R. Suraj Reddy  Chandra Shekhar Jha  Krishnan Sundara Rajan
Affiliation:1.National Remote Sensing Centre (ISRO),Balanagar, Hyderabad,India;2.International Institute of Information Technology,Hyderabad,India
Abstract:Forest inventory parameters, primarily tree diameter and height, are required for several management and planning activities. Currently, Terrestrial Laser Scanning (TLS) is a promising technology in automated measurements of tree parameters using dense 3D point clouds. In comparison with conventional manual field inventory methods, TLS systems would supplement field data with detailed and relatively higher degree of accurate measurements and increased measurement frequency. Although, multiple scans from TLS captures more area, they are resource and time consuming to ensure proper co-registration between the scans. On the other hand, Single scans provide a fast and recording of the data but are often affected by occlusions between the trees. The current study evaluates potential of single scan TLS data to (1) develop an automatic method for tree stem identification and diameter estimation (diameter at breast height—DBH) using random sample consensus (RANSAC) based circle fitting algorithm, (2) validate using field based measurements to derive accuracy estimates and (3) assess the influence of distance to scanner on detection and measurement accuracies. Tree detection and diameter measurements were validated for 5 circular plots of 20 m radius using single scans in dry deciduous forests of Betul, Madhya Pradesh. An overall tree detection accuracy of 85 and 70% was observed in the scanner range of 15 and 20 m respectively. The tree detection accuracies decreased with increased distance to the scanner due to the decrease in visible area. Also, estimated stem diameter using TLS was found to be in agreement with the field measured diameter (R2 = 0.97). The RMSE of estimated DBH was found to be 3.5 cm (relative RMSE ~20%) over 202 trees detected over 5 plots. Results suggest that single scan approach suffices the cause of accuracy, reducing uncertainty and adds to increased sampling frequency in forest inventory and also implies that TLS has a seemingly high potential in forest management.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号