首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of precipitation products over complex mountainous terrain: A water resources perspective
Authors:E Ward  W BuytaertL Peaver  H Wheater
Institution:a Department of Civil and Environmental Engineering, Skempton Building, Imperial College of Science, Technology and Medicine, London SW7 2BU, UK
b Anglian Water Services Ltd., Water Resources Management Team, Milton House, Cowley Road, Cambridge CB4 0AP, UK
c School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada SK S7N 5C8
Abstract:The availability of in situ measurements of precipitation in remote locations is limited. As a result, the use of satellite measurements of precipitation is attractive for water resources management. Combined precipitation products that rely partially or entirely on satellite measurements are becoming increasingly available. However, these products have several weaknesses, for example their failure to capture certain types of precipitation, limited accuracy and limited spatial and temporal resolution. This paper evaluates the usefulness of several commonly used precipitation products over data scarce, complex mountainous terrain from a water resources perspective. Spatially averaged precipitation time series were generated or obtained for 16 sub-basins of the Paute river basin in the Ecuadorian Andes and 13 sub-basins of the Baker river basin in Chilean Patagonia. Precipitation time series were generated using the European Centre for Medium Weather Range Forecasting (ECMWF) 40 year reanalysis (ERA-40) and the subsequent ERA-interim products, and the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset 1 (NCEP R1) hindcast products, as well as precipitation estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The Tropical Rainfall Measurement Mission (TRMM) 3B42 is also used for the Ecuadorian Andes. These datasets were compared to both spatially averaged gauged precipitation and river discharge. In general, the time series of the remotely sensed and hindcast products show a low correlation with locally observed precipitation data. Large biases are also observed between the different products. Hydrological verification based on river flows reveals that water balance errors can be extremely high for all evaluated products, including interpolated local data, in basins smaller than 1000 km2. The observations are consistent over the two study regions despite very different climatic settings and hydrological processes, which is encouraging for extrapolation to other mountainous regions.
Keywords:Remote sensing  TRMM  PERSIANN  NCEP  Andes  Precipitation measurement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号