首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena
Authors:Ali KhosronejadSeokkoo Kang  Iman BorazjaniFotis Sotiropoulos
Institution:Saint Anthony Falls Laboratory, Department of Civil Engineering, University of Minneasota, 2 Third Ave. SE, Minneapolis, MN 55414, USA
Abstract:The fluid-structure interaction curvilinear immersed boundary (FSI-CURVIB) numerical method of Borazjani et al. 3] is extended to simulate coupled flow and sediment transport phenomena in turbulent open-channel flows. The mobile channel bed is discretized with an unstructured triangular mesh and is treated as a sharp-interface immersed boundary embedded in a background curvilinear mesh used to discretize the general channel outline. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations closed with the k − ω turbulence model are solved numerically on a hybrid staggered/non-staggered grid using a second-order accurate fractional step method. The bed deformation is calculated by solving the sediment continuity equation in the bed-load layer using an unstructured, finite-volume formulation that is consistent with the CURVIB framework. Both the first-order upwind and the higher-order hybrid GAMMA schemes 12] are implemented to discretize the bed-load flux gradients and their relative accuracy is evaluated through a systematic grid refinement study. The GAMMA scheme is employed in conjunction with a sand-slide algorithm for limiting the bed slope at locations where the material angle of repose condition is violated. The flow and bed deformation equations are coupled using the partitioned loose-coupling FSI-CURVIB approach 3]. The hydrodynamic module of the method is validated by applying it to simulate the flow in an 180° open-channel bend with fixed bed. To demonstrate the ability of the model to simulate bed morphodynamics and evaluate its accuracy, we apply it to calculate turbulent flow through two mobile-bed open channels, with 90° and 135° bends, respectively, for which experimental measurements are available.
Keywords:Immersed boundary method  Numerical models  Sediment transport models  Channel bends  Turbulence  Steady state
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号