首页 | 本学科首页   官方微博 | 高级检索  
     

中国西部陆面过程次网格地形参数化的改进对区域气温和降水模拟的影响研究
引用本文:陈广宇,韦志刚,董文杰,朱献,陈辰,刘雅静,郑志远. 中国西部陆面过程次网格地形参数化的改进对区域气温和降水模拟的影响研究[J]. 大气科学, 2019, 43(4): 846-860. DOI: 10.3878/j.issn.1006-9895.1807.18156
作者姓名:陈广宇  韦志刚  董文杰  朱献  陈辰  刘雅静  郑志远
作者单位:北京师范大学地理科学学部地表过程与资源生态国家重点实验室,北京,100875;北京师范大学地理科学学部地表过程与资源生态国家重点实验室,北京100875;北京师范大学珠海分校未来地球研究院珠海区域气候—环境—生态预测预警协同创新中心,广东珠海519087;北京师范大学珠海分校未来地球研究院珠海区域气候—环境—生态预测预警协同创新中心,广东珠海519087;中山大学大气科学学院,广东珠海519082
基金项目:国家重点研发计划项目2016YFA0602701
摘    要:地表作为大气模块的下垫面,为大气模块提供边界条件,地形对于模式结果的准确性起到至关重要的作用。现有的陆面过程模式在陆面同一网格内的次网格单元采用相同的大气强迫量,没有考虑次网格地形对网格内大气强迫量的影响,这关系到模式对气象要素和陆气交换量的模拟水平。本文在陆面模式NOAH处理次网格单元的同时,将输入的大气强迫量根据其与地形高度的关系进行修订,提出新的次网格地形的参数化方案,并引入到WRF(Weather Research and Forecasting)模式中进行数值试验,通过3组数值模拟试验,与未改进的方案和细网格方案分析比较,探讨新参数化方案对WRF 模式模拟结果的影响。结果表明:地形越复杂区域,次网格地形的影响越大。本文引入的新陆面次网格地形方案对天山山脉和昆仑山脉以及青藏高原南部的地表气温的模拟有较大改善,模拟的地表气温在大范围区域内都更贴近细网格方案。虽然新陆面次网格地形方案和细网格试验都对温度的模拟结果都有改善,但新陆面次网格地形方案对降水的模拟改善甚微,而细网格试验对降水模拟却有改进,这是由于细网格试验在陆面和大气网格都进行了细化,而新陆面次网格地形方案只考虑了陆面次网格的影响。具体来说,新陆面次网格地形方案对温度的模拟结果改进是通过改变地表向上长波和地表感热实现的。而细网格试验由于同时细化了大气和陆面的空间网格,对降水和温模拟的改进是通过综合改变地表能量平衡实现的。

关 键 词:WRF模式  NOAH陆面模式  中国西部  次网格地形  气温  降水  地表能量平衡.
收稿时间:2018-04-26

Effects of Improvement of Land Surface Subgrid Topographic Parameterization on Regional Temperature and Precipitation Simulation in Western China
CHEN Guangyu,WEI Zhigang,DONG Wenjie,ZHU Xian,CHEN Chen,LIU Yajing,and ZHENG Zhiyuan. Effects of Improvement of Land Surface Subgrid Topographic Parameterization on Regional Temperature and Precipitation Simulation in Western China[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 846-860. DOI: 10.3878/j.issn.1006-9895.1807.18156
Authors:CHEN Guangyu  WEI Zhigang  DONG Wenjie  ZHU Xian  CHEN Chen  LIU Yajing  and ZHENG Zhiyuan
Affiliation:1.State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875;2.Zhuhai Joint Innovative Center for Climate-Environment-Ecosystem, Future Earth Research Institute, Beijing Normal University, Zhuhai 519087;3.School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, Guangdong 519082
Abstract:The land surface provides underlying lower boundary conditions for atmospheric models. Topography plays a crucial role in the accuracy of the model results. Most of current land surface models use the same atmospheric forcing in subgrid units within the same model grid, and don’t not consider the influence of subgrid topography on atmospheric forcing that would impact the simulation of meteorological elements and land-atmosphere interaction. In this paper, a modified Land Surface Subgrid Topographic Parameterization (LSSTP) is proposed to revise the input atmospheric forcing according to its relationship with the subgrid terrain height in the NOAH land surface model . The LSSTP is then introduced into the WRF (Weather Research and Forecasting) model for numerical experiments. Three groups of numerical experiments have been conducted to investigate the effect of this improvement on the simulation results of the WRF model. It is found that the new LSSTP introduced in this paper has clearly improved the simulation of 2m air temperature in the surface over the Tianshan Mountains, the Kunlun Mountains and the southern Qinghai-Tibet Plateau. However, the new LSSTP shows little improvement on precipitation simulation. In contrast, the experiments with higher resolution can well simulate precipitation, which is attributed to the fact that the experiment with higher resolution has been refined in both the land and the atmosphere, while the new LSSTP only considers subgrid effect in the surface. Temperature simulations using the new LSSTP are improved by revising surface upward long-wave flux and surface sensible heat flux, while the experiment with higher resolution has simultaneously refined the grids of both the atmosphere and land, and the improvement of precipitation and temperature simulation is achieved by comprehensively changing the surface energy balance.
Keywords:WRF Model  NOAH Land Surface Model  Western China  Subgrid topography  Temperature  Precipitation  Surface Energy Balance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号