首页 | 本学科首页   官方微博 | 高级检索  
     检索      

双台风相互作用及其影响
引用本文:张晓慧,张立凤,周海申,魏通峰.双台风相互作用及其影响[J].应用气象学报,2019,30(4):456-466.
作者姓名:张晓慧  张立凤  周海申  魏通峰
作者单位:1.空军航空大学航空作战勤务学院, 长春 130000
基金项目:国家自然科学基金项目(41775123),北极阁开放研究基金项目-南京大气科学联合研究中心(NJCAR2018ZD03)
摘    要:采用三维变分混合同化方法对双台风菲特(1323)和丹娜丝(1324)、天鹅(0907)和莫拉克(0908)进行数值模拟,并在此基础上,采用移除双台风中任一台风和增强或减弱任一台风的方法,对双台风的相互作用进行了敏感性试验。结果表明:台风丹娜丝的作用导致台风菲特路径偏南,移速偏慢;台风菲特的作用导致台风丹娜丝路径偏北,移速变化不大。双台风相互作用使台风菲特和丹娜丝强度发生变化。在台风菲特强盛阶段强度更强,减弱消亡阶段强度更弱。2013年10月6-9日我国华东地区出现的强降水主要受台风菲特影响,台风丹娜丝使降水强度增强、强降水中心位置偏南。双台风相互作用使台风天鹅移向偏南,移速偏快,但台风天鹅对台风莫拉克的移向、移速影响不大;台风天鹅路径盘旋曲折,每次移向的变化都与台风莫拉克有关;台风天鹅打转程度与台风莫拉克的强度呈正相关,双台风间存在涡度、水汽通量等的相互影响及输送机制。

关 键 词:数值试验    双台风    WRF模式    涡旋重构技术
收稿时间:2018/11/1 0:00:00
修稿时间:2019/3/1 0:00:00

Interaction and Influence of Binary Typhoons
Zhang Xiaohui,Zhang Lifeng,Zhou Haishen and Wei Tongfeng.Interaction and Influence of Binary Typhoons[J].Quarterly Journal of Applied Meteorology,2019,30(4):456-466.
Authors:Zhang Xiaohui  Zhang Lifeng  Zhou Haishen and Wei Tongfeng
Institution:1.Department of Aeronautical Meteorology, Aviation University of Air Force, Changchun 1300002.National University of Defense Technology, Nanjing 2111003.Unit 63769 of PLA, Xi'an 710000
Abstract:The non-static mesoscale numerical model WRF V3.3 is used to study the influence of the interaction between binary typhoons on their moving path, intensity and precipitation. Data of NCEP FNL are used as initial field and side boundary conditions, and satellite data of ATOVS such as AMSUA, AMSUB, HIRS (3/4) are assimilated. Simulation results of binary typhoons in control runs, which are based on hybrid ensemble three-dimensional variational data assimilation (Ens-3DVar) system, are very close to the real intensity, moving path and precipitation. Beyond that, 6 sensitive experiments based on control runs are designed. The 96-hour simulations are conducted after one of the binary typhoons (Fitows/Danas/Goni/Morakot) is removed from the initial field which adopts the first step of vortex reconstruction technology in WRF ARW in the sensitive experiments (C1-RMF/C1-RMD/C2-RMG/C2-RMM). Experiment C2-WEM (C2-STM) is conducted by weakening or enhancing one of the binary typhoons in order to study effects of typhoon Morakot on typhoon Goni, but the typhoon radius is unchanged. Results of sensitive experiments and control runs are further compared and analyzed.
In Case 1, the role of typhoon Danas leads typhoon Fitow to move southward and slower. The role of typhoon Fitow causes typhoon Danas to move northward but has little effects on the shifting speed. The strength of binary typhoons Fitow and Danas have been changed by the interaction between them. Specifically, the interaction of binary typhoons makes the intensity of typhoon Fitow and typhoon Danas stronger in the strong stage and weaker in the dying stage of typhoon Fitow. From 6 October to 9 October in 2013, the heavy precipitation in East China is mainly affected by typhoon Fitow. Affected by typhoon Danas, the precipitation intensity brought by typhoon Fitow is enhanced, and the heavy precipitation center moves southward.
In Case 2, the interaction of binary typhoons makes typhoon Goni move southward and faster, but typhoon Goni has little influence on the movement and speed of typhoon Morakot. The winding path and direction change of typhoon Goni are all associated with typhoon Morakot. The bending extent of typhoon Goni is positively correlated with the strength of typhoon Morakot. Main causes are the interaction and transportation mechanism of vorticity, water vapor flux between binary typhoons.
Keywords:numerical experiment  binary typhoons  WRF model  bogussing
本文献已被 CNKI 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号