首页 | 本学科首页   官方微博 | 高级检索  
     

基于RCGA的PPC模型在化探异常识别与提取中的应用
引用本文:肖凡,陈建国. 基于RCGA的PPC模型在化探异常识别与提取中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(4). DOI: 10.13278/j.cnki.jjuese.201704307
作者姓名:肖凡  陈建国
作者单位:1. 中山大学地球科学与工程学院, 广州 510275;中山大学广东省地质过程与矿产资源探查重点实验室,广州 510275;2. 中国地质大学(武汉)资源学院,武汉 430074;中国地质大学地质过程与矿产资源国家重点实验室, 武汉 430074
基金项目:国家自然科学基金项目,广东省自然科学基金博士启动项目(2015A030310246)Supported by the National Natural Science Foundation of China,the Guangdong Natural Science Foundation
摘    要:为了进行地球化学异常的识别与提取,针对化探数据的特点,本文提出了一种将高维降维技术——投影寻踪分类(PPC)模型与实数编码遗传算法(RCGA)相结合的计算方法,分析了运用RCGA-PPC模型进行化探异常识别与提取的关键技术问题,并在MATLAB环境下开发了该方法的软件应用模块。以云南个旧地区水系沉积物地球化学数据为例,选取区域内Sn、Cu、Pb、Zn、As、Cd等主要成矿元素及与成矿关系密切的9种元素作为计算变量,利用RCGA-PPC模型对其进行处理和异常识别。研究表明:RCGAPPC模型中最佳投影值较高的地区与该区域实际矿床(点)吻合情况较好。该模型对化探异常的识别能力较强,是一种有效的化探多元素综合异常识别与提取方法。

关 键 词:投影寻踪分类  实数编码遗传算法  化探数据处理  异常识别提取  云南个旧

Application of PPC Model Combined with RCGA to Identify and Extract Geochemical Anomaly
Xiao Fan,Chen Jianguo. Application of PPC Model Combined with RCGA to Identify and Extract Geochemical Anomaly[J]. Journal of Jilin Unviersity:Earth Science Edition, 2017, 47(4). DOI: 10.13278/j.cnki.jjuese.201704307
Authors:Xiao Fan  Chen Jianguo
Abstract:In order to identify and extract geochemical anomalies, a novel method, which combines projection pursuit classification (PPC), a dimension-reducing technology on high-dimensional data, with the real coded genetic algorithm (RCGA), has been proposed in this paper.We analyzed and discussed the key technological issues in geochemical anomaly identification and extraction using RCGA-PPC model based on the features of geochemical data.At the same time, an application software package was developed for the RCGA-PPC model on MATLAB.As a case study, stream sediment geochemical data in Gejiu, Yunnan, China, were tested with the RCGA-PPC model and Sn, Cu, Pb, Zn, As, Cd, etc.ore forming or/and mineralization associate elements were selected as the variables to recognize anomalies.The results show that most of the local higher optimal projection values are well coincident with the deposits location.Therefore, it can be concluded that RCGA-PPC model could be a useful method for geochemical anomaly identification and extraction.
Keywords:projection pursuit classification  real coded genetic algorithm  geochemical data processing  anomaly identification and extraction  Gejiu  Yunnan
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号