首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Neutrino detection with CLEAN
Authors:DN McKinsey  KJ Coakley
Institution:

aYale University, New Haven, CT 06511, United States

bNational Institute of Standards and Technology, Boulder, CO 80305, United States

Abstract:This article describes CLEAN, an approach to the detection of low-energy solar neutrinos and neutrinos released from supernovae. The CLEAN concept is based on the detection of elastic scattering events (neutrino–electron scattering and neutrino–nuclear scattering) in liquified noble gases such as liquid helium, liquid neon, and liquid xenon, all of which scintillate brightly in the ultraviolet. Key to the CLEAN technique is the use of a thin film of wavelength-shifting fluor to convert the ultraviolet scintillation light to the visible, thereby allowing detection by conventional photomultipliers.

Liquid neon is a particularly promising medium for CLEAN. Because liquid neon has a high scintillation yield, has no long-lived radioactive isotopes, and can be easily purified by use of cold traps, it is an ideal medium for the detection of rare nuclear events. In addition, neon is inexpensive, dense, and transparent to its own scintillation light, making it practical for use in a large self-shielding apparatus. The central region of a full-sized detector would be a stainless steel tank holding approximately 135 metric tons of liquid neon. Inside the tank and suspended in the liquid neon would be several thousand photomultipliers.

Monte Carlo simulations of gamma ray backgrounds have been performed assuming liquid neon as both shielding and detection medium. Gamma ray events occur with high probability in the outer parts of the detector. In contrast, neutrino scattering events occur uniformly throughout the detector. We discriminate background gamma ray events from events of interest based on a spatial maximum likelihood method estimate of event location. Background estimates for CLEAN are presented, as well as an evaluation of the sensitivity of the detector for p–p neutrinos. Given these simulations, the physics potential of the CLEAN approach is evaluated.

Keywords:Extreme ultraviolet  Liquid neon  Neutrino  Scintillation  Wavelength shifter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号