首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Abiotic regulators of soil respiration in desert ecosystems
Authors:Lihua Zhang  Yaning Chen  Weihong Li  Ruifeng Zhao
Institution:(1) Key laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China;(2) Graduate University of Chinese Academy of Sciences, Beijing, 100039, China
Abstract:Soil temperature and soil moisture are the most important environmental factors controlling soil respiration in mesic ecosystems. However, soil respiration and associated abiotic regulators have been poorly studied in desert ecosystems. In this study, soil respiration was measured using an automated CO2 efflux system (LI-COR 8100), and the effects of soil temperature and moisture on the rate of soil respiration were examined in six desert sites three communities—Haloxylon ammodendron, Halostachys caspica and Anabasis aphylla at high (B) and low (A) vegetation coverage respectively]. It was found that soil respiration was significantly and positively correlated with soil surface temperature. A multi-variable model of soil temperature and soil moisture could explain 61.9% of temporal variation in soil CO2 efflux at a larger scale. There were significantly negative correlations between soil respiration and soil moisture in Haloxylon ammodendron B and Halostachys caspica B sites, which represented the driest and wettest sites, respectively. The results also showed that soil respiration displayed obvious diurnal and seasonal patterns during the growing season. The Q10 values for Haloxylon ammodendron A and B, Halostachys caspica A and B, and Anabasis aphylla A and B sites were 1.3, 1.34, 1.58, 1.65, 1.31 and 1.17, respectively, with a cross-site average of 1.39. The results showed that soil respiration was not positively correlated with soil moisture unlike in most mesic ecosystems. However, soil respiration in desert ecosystems is less sensitive to temperature variation than most mesic ecosystems as indicated by the lower Q10 values possibly due to energy limitation.
Keywords:Desert ecosystem  Q10            Soil moisture  Soil respiration  Temperature
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号