首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2
Authors:Opdyke B N  Walker J C
Institution:Department of Geological Sciences, University of Michigan, Ann Arbor 48109-1063, USA.
Abstract:Differences in the rate of coral reef carbonate deposition from the Pleistocene to the Holocene may account for the Quaternary variation of atmospheric CO2. Volumes of carbonate associated with Holocene reefs require an average deposition rate of 2.0 x 10(13) mol/yr for the past 5 ka. In light of combined riverine, midocean ridge, and ground-water fluxes of calcium to the oceans of 2.3 x 10(13) mol/yr, the current flux of calcium carbonate to pelagic sediments must be far below the Pleistocene average of 1.2 x 10(13) mol/yr. We suggest that sea-level change shifts the locus of carbonate deposition from the deep sea to the shelves as the normal glacial-interglacial pattern of deposition for Quaternary global carbonates. To assess the impact of these changes on atmospheric CO2, a simple numerical simulation of the global carbon cycle was developed. Atmospheric CO2 as well as calcite saturation depth and sediment responses to these carbonate deposition changes are examined. Atmospheric CO2 changes close to those observed in the Vostok ice core, approximately 80 ppm CO2, for the Quaternary are observed as well as the approximate depth changes in percent carbonate of sediments measured in the Pacific Ocean over the same time interval.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号