首页 | 本学科首页   官方微博 | 高级检索  
     检索      


VLF-emissions associated with ring current electrons: Off-equatorial observations
Authors:Kaichi Maeda  Paul H Smith
Institution:NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.
Abstract:The combination of a small inclination of the orbit (~4°) with the tilt angle (~11°) of the Earth's magnetic dipole axis enabled the S3-A satellite (Explorer 45) to make simultaneous observations of magnetospheric VLF-emissions and the associated enhancement of ring current electrons not only at the magnetic equator but also up to 15° geomagnetic latitudes. Microdensitometer scanning of the wideband data of these emissions reveals that the band of missing emission in the off-equatorial whistler mode emissions (chorus) appears at fHo2 and that the intensities of the off-equatorial emission above fHo2 are very weak in contrast to those of the near equatorial emissions, where fHo2 is the equatorial electron gyrofrequency corresponding to the local gyrofrequency fH at the satellite. Ray-tracing of whistler mode waves produced by the enhanced ring-current electrons at the geomagnetic equator just outside of the plasmapause has shown that some of these waves are reflected from high latitudes back to the Equator inside the source region. This process had been previously speculated to explain the formation of the bimodal intensity distribution with a gap at half the gyrofrequency (the two-band chorus) in the equatorial emission data. The intensities of those reflected waves, however, are shown to be insufficient to explain the observed emissions below fHo2 at the Equator. These results indicate that the superposition of two types of emissions produced by the same processes but from different locations is not the main mechanism for the formation of the two-band chorus and that the dominant sources of these choruses are located around ± 5° geomagnetic latitude.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号