首页 | 本学科首页   官方微博 | 高级检索  
     


Biotite Equilibria and Fluid Circulation in the Klokken Intrusion
Authors:PARSONS, IAN   MASON, R. A.   BECKER, S. M.   FINCH, A. A.
Affiliation:1Department of Geology and Mineralogy, University of Aberdeen Aberdeen AB9 IAS, UK
2Department of Earth Sciences, University of Cambridge, Bullard Laboratories Madingley Rise, Madingley Road, Cambridge CB3 3EZ, UK
3Department of Geology and Geophysics, Grant Institute, University of Edinburgh West Mains Road, Edinburgh EH9 3JW, UK
Abstract:Chemical variation in biotite from the KJokken gabbro-syeniteintrusion in the Proterozoic Gardar province in South Greenlandhas been investigated by electron probe and, for F and Li, ionmicroprobe. Most mica occurs in small amounts as fringes onilmenomagnetite or fayalite, rarely as an intercumulus or poikiliticphase. The micas range continuously from Phlog70Ann30 in a gabbro,to Phlog4Ann96 in the most evolved (slightly persilicic andperalkaline) syenite. In the syenites Fe-Mg partitioning betweenbiotite and olivine can be described by a single distributioncoefficient, Kd = XF XBiotMs/XBiotFe ~3, suggesting that thesereactant phases mix ideally at the reaction T. Experimentaldata for Fe-Mg exchange via aqueous chloride solutions (Schulien,1980) imply low T (~32Q?C). F was absent in the experiments andmay significantly affect the exchange equilibrium. Kd in thegabbros is ~ 1, consistent with equilibrium via a fluid depletedin F because of crystallization of large amounts of amphibole. Al, Mn, and Ti vary regularly throughout the series and canbe used as markers of cryptic variation in the layered syenites.(Al + Si): 22 O is always in the range 7.7–7.85. A1/(A1+ Si) decreases from ~0.31 in gabbros to 0.25 in the most Fe-richmicas. Li is always < 260 ppm w. In the syenite series, Fshows a near-linear inverse relationship with Fe/(Fe + Mg) whichpasses close to OF at Ann100 with ~l.4 wt% F(0–7 F to 44positive charges) at Ann44. Biotites in the gabbro unit (whichforms an outer sheath to the intrusion) have relatively lessF, probably because it was consumed by coexisting amphibole.{delta}I8O is similar for both gabbros and syenites, and it is unlikelythat an envelope fluid was involved in the reactions. G reachesa maximum of 0.3 wt. % in biotite except for that in one syenitesample with 0–7 wt. %. Calculation of relative F-OH fugacitiesfrom the reaction OH-phlogopite + F-annite = F-phlogopite +OH-annite, as calibrated by Munoz (1984), appears to suggestthat each horizon in the layered series was in equilibrium witha slightly different fluid. In view of the intimate interleavingof these lithologies, this is improbable. The equilibrium constantof the exchange reaction, obtained from the experimental data,seems not to be appropriate to the Klokken assemblage, or toother examples of regular F-Fe avoidance. Explanations may includeshort-range Fe-Mg ordering in the natural examples or the effectof additional components in the fluid. F contents are high incomparison with biotites from calc-alkaline complexes; highmagmatic F may account for the igneous layering common in theGardar. Temperatures calculated from reactions involving fayaliteand magnetite show that most biotites grew subsolidus. The F-poorannites grew > 300 ?C subsolidus even when texturally intercumulus.Stable isotope data are consistent with the separation and retentionof a deuteric fluid during the final stage of magmatic crystallization.Klokken was not generally subject to the pervasive, long-range(in both distance and time) dydrothermal interactions demonstratedin calcalkaline and theleiitic intrusions, although more extensivefluid flow is indicated for the more permeable laminated syenites.The biotites preserve chemical variation indicating local equilibriumwith other mafic phases, and halogens provide a useful markerof subsolidus fluid flow.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号