首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The dynamics of eccentric accretion discs in superhump systems
Authors:Simon Goodchild  Gordon Ogilvie
Institution:Institute of Astronomy, Madingley Road, Cambridge CB3 0HA;Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA
Abstract:We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought that this resonance leads to growth of eccentricity and a modulation in the light curve due to the interaction of a precessing eccentric disc with tidal stresses. A single differential equation is formulated which describes the propagation, resonant excitation and viscous damping of eccentricity. The theory is first worked out in the simple case of a narrow ring and leads to the conclusion that the eccentricity distribution is locally suppressed by the presence of the resonance, creating a dip in the eccentricity at the resonant radius. Application of this theory to the superhump case confirms this conclusion and produces a more accurate expression for the precession rate of the disc than has been previously accomplished with simple dynamical estimates.
Keywords:accretion  accretion discs  stars: dwarf novae
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号