首页 | 本学科首页   官方微博 | 高级检索  
     


P-wave Tomography in Inhomogeneous Orthorhombic Media
Authors:T. Mensch  V. Farra
Affiliation:Département de Sismologie, Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris cedex 05, France. E-mail: farra@ipgp.jussieu.fr, FR
Abstract:— A P-wave tomographic method for 3-D complex media (3-D distribution of elastic parameters and curved interfaces) with orthorhombic symmetry is presented in this paper. The technique uses an iterative linear approach to the nonlinear travel-time inversion problem. The hypothesis of orthorhombic anisotropy and 3-D inhomogeneity increases the set of parameters describing the model dramatically compared to the isotropic case. Assuming a Factorized Anisotropic Inhomogeneous (FAI) medium and weak anisotropy, we solve the forward problem by a perturbation approach. We use a finite element approach in which the FAI medium is divided into a set of elements with polynomial elastic parameter distributions. Inside each element, analytical expressions for rays and travel times, valid to first-order, are given for P waves in orthorhombic inhomogeneous media. More complex media can be modeled by introducing interfaces separating FAI media with different elastic properties. Simple formulae are given for the Fréchet derivatives of the travel time with respect to the elastic parameters and the interface parameters. In the weak anisotropy hypothesis the P-wave travel times are sensitive only to a subset of the orthorhombic parameters: the six P-wave elastic parameters and the three Euler angles defining the orientation of the mirror planes of symmetry. The P-wave travel times are inverted by minimizing in terms of least-squares the misfit between the observed and calculated travel times. The solution is approached using a Singular Value Decomposition (SVD). The stability of the inversion is ensured by making use of suitable a priori information and/or by applying regularization. The technique is applied to two synthetic data sets, simulating simple Vertical Seismic Profile (VSP) experiments. The examples demonstrate the necessity of good 3-D ray coverage when considering complex anisotropic symmetry.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号