首页 | 本学科首页   官方微博 | 高级检索  
     


A method for determining both diffusion and sorption coefficients of rock medium within a few days by adopting a micro-reactor technique
Authors:Keita Okuyama   Akira Sasahira   Kenji Noshita  Toshiaki Ohe
Affiliation:aHitachi, Ltd., Omika-cho, Hitachi-shi, Ibaraki 319-1221, Japan;bTokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
Abstract:Migration properties characterized by physico-chemical factors such as distribution coefficient (Kd) and diffusion coefficient (De) are of great concern in performance assessment of high-level radioactive waste disposal in a deep geologic environment. These coefficients are normally obtained with different sample geometries using conventional methods, i.e., crushed samples by the batch sorption method for Kd determination and block samples by the through-diffusion method for De. A size dependence on both Kd and De has been reported and an additional correction due to size difference is required to maintain consistency of the data set. A fast method was developed, hereafter referred to as the micro-channel method, to determine both the sorption coefficient (Rd) and De using non-crushed rock sample by adopting the micro-reactor technique. In this method, a radionuclide solution is injected into a micro-channel (20 mm length, 4 mm width, 160 μm depth), which is in contact with a plate-shaped rock sample. A part of the injected radionuclide can diffuse into the rock matrix and/or adsorb on the rock surface and this results in an inlet-outlet concentration difference. A breakthrough curve is easily obtained with a short observation period because the injection amount is extremely small and is comparable to that escaping by diffusion into the matrix. The breakthrough curve is analyzed by a two-dimensional diffusion-advection equation to evaluate Rd and De.In the present study, tritiated water (specific activity, 1.2 × 104 Bq/mL; pH, 6) was injected into the micro-channel, and the breakthrough curve of 3H obtained. A series of experiments was carried out by changing the flow rate of the tritiated water (2.6 × 10−5–7.7 × 10−4 m/s). Rock samples were biotite granite from the Makabe area, Japan. The diffusion coefficient evaluated by least squares fitting to the numerical solutions (De = 1.5 × 10−11 m2/s) agreed well with that obtained by the through-diffusion method (1.3 × 10−11 m2/s). The breakthrough curve of Cs ([Cs] = 1.0 × 10−7 mol/L, pH 6) labeled with 134Cs (specific activity adjusted to 4.9 × 10Bq/mL) was also obtained. A nearly constant Rd value (5.5 × 10−2 m3/kg) was found when the flow rate was less than 2.5 × 10−4 m/s. This implied that the sorption equilibrium is reached and Kd is obtained by the present method. This value was almost identical to Kd obtained by the batch sorption method (5.0 × 10−2 m3/kg), but the testing period was very different; 1 day and 7 days, respectively. It is concluded that application of the micro-channel method provided advantages when compared with the conventional methods.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号