首页 | 本学科首页   官方微博 | 高级检索  
     


A fast algorithm for high-accuracy frequency measurement:application to ultrasonic Doppler sonar
Authors:Susaki   H.
Affiliation:Res. Lab., Furuno Electr. Co. Ltd., Nishinomiya ;
Abstract:In an attempt to investigate the technical feasibility of a CW Doppler sonar, we have examined a method of measuring low velocities with a high-velocity resolution, or frequency resolution, by use of a simple circuit configuration employing digital signal processing technique. The following discussion presents the results of the investigation. In the measuring method described, the fast Fourier transform (FFT) of undersampled data is calculated and the Doppler shift is obtained by searching for a peak frequency of the power spectrum. To achieve the intended frequency resolution of 1 Hz by FFT operation, measurement of data for a minimum measuring period of 1 s is essential. If the sampling frequency is set to 50 kHz, the number of samples obtained during the minimum measuring period of I s would amount to 50000. This is not practical in light of the time required for the FFT operation. To overcome this problem, our new measuring method employs a decimation technique for reducing the number of samples down to 1024 while maintaining a frequency resolution of about 1 Hz. This paper describes how the processing time can be drastically reduced to about 1/300th compared to the conventional technique by a combination of complex exponential functions, filtering and decimation, and thereby indicates the possibility of real-time CW Doppler data processing
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号