首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry and oxygen isotopic composition of olivine in kimberlites from the Arkhangelsk province: Contribution of mantle metasomatism
Authors:A A Nosova  E O Dubinina  L V Sazonova  A V Kargin  N M Lebedeva  V A Khvostikov  Zh P Burmii  I A Kondrashov  V V Tret’yachenko
Institution:1.Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM),Russian Academy of Sciences,Moscow,Russia;2.Geological Faculty,Moscow State University,Moscow,Russia;3.Institute of Microelectronic Technology and Ultrahigh-Purity Materials,Russian Academy of Sciences,Chernogolovka,Russia;4.ALROSA Research and Exploration Company,Arkhangelsk,Russia
Abstract:The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92–0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05–0.23), Zr/Nb (0.28–0.80), and Zn/Cu (3–20) ratios and low Li concentrations (1.2–2.0 ppm), and the oxygen isotopic composition of this olivine δ18O = 5.64‰ is higher than that of olivine in mantle peridotites (δ18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90–0.93, high Ti concentrations (100–300 ppm), high ratios Ti/Na (0.90–2.39), Zr/Nb (0.31–1.96), and Zn/Cu (12–56), elevated Li concentrations (1.9–3.4 ppm), and oxygen isotopic composition δ18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the δ18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose δ18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water–silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号