首页 | 本学科首页   官方微博 | 高级检索  
     


Oscillatory flow in the liquid core
Authors:D. Crossley
Affiliation:Geophysics Laboratory, McGill University, 3450 University St., Montreal, Quebec H3A 2A7 Canada
Abstract:There has been renewed interest lately in the possibility that at least a part of the Earth's liquid core may be stably stratified. A gravitationally stable region would permit the existence of inertia-gravity or gravity-inertia waves in addition to the Rossby and Kelvin waves which exist due to rotational effects and which are well known in oceanography and atmospheric dynamics. These wave motions are of interest because their periods are dependent on the density stratification as specified by the buoyancy frequency N which in turn determines the amplitude of large-scale radial motions in the core.The waves have too high a frequency to be connected dynamically to the magnetic field in the core, but if they do exist they may be detectable by sensitive long-period gravimeters at the Earth's surface. This paper examines the available evidence for the frequency regimes, excitation and damping mechanisms of the core waves. It is concluded that although the waves may exist theoretically, their detection and interpretation as a method for determining N is a difficult proposition.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号