首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On large-scale solar convection
Authors:Robert P Davies-Jones  Peter A Gilman
Institution:(1) Dept. of Astro-Geophysics, University of Colorado, and Advanced Study Program, National Center for Atmospheric Research, Boulder, Colo., USA
Abstract:We examine the effects of rotation about a vertical axis on thermal convection with a simple model in which an inviscid, incompressible fluid of zero thermal conductivity and electrical resistivity is contained in a thin annulus of rectangular cross-section. The initial steady state assumed is one of no motion relative to the rotating frame with constant (unstable) vertical temperature gradient and uniform toroidal magnetic field. Small periodic disturbances are then introduced and the linearized perturbation equations solved. We also determine the second-order mean circulations and magnetic fields that are forced by non-zero Reynolds and thermal stresses and magnetic field transports.The solutions have several properties which are relevant to large-scale solar phenomena if giant long-lived convection cells exist on the sun. In particular, the convective cells are tilted in latitude in the same sense as bipolar magnetic regions, and induce vertical magnetic fields with the same tilt. They transport momentum across latitude circles through Reynolds stresses and induced meridional circulations thus setting up a differential rotation. Cells which grow slowly compared to the rotation rate and have comparable dimensions in latitude and longitude transport momentum toward the equator. The cells also form a poloidal magnetic field from initial toroidal field, in a manner similar to that put forth by Parker.The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号