首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Martian cratering VI: Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor
Authors:William K HARTMANN
Abstract:Abstract— This paper develops a methodology to establish absolute Martian ages by deriving isochrons on a plot of Martian impact crater density vs. crater diameter, calibrated by lunar crater/age data. The isochrons illustrated here are based on a Mars/Moon cratering ratio of 1.6 at constant size, but there is a factor of 2 to 4 uncertainty in this ratio and the consequent model ages. Martian crater diameter distributions are determined in several areas down to diameter D = 16–45 m; the shapes of the curves in young areas are found to be close to that of the predicted isochrons and close to the standard production function found by Neukum. The youngest areas studied here display the lunar-like production function down to D ~30 m, where saturation equilibrium sets in. Model crater retention ages of several volcanic units are found to be a few hundred million years or less, with estimated uncertainties ranging from a factor of 2 lower to a factor of 4 higher. The results are consistent with Martian meteorite ages. Volcanism on Mars has probably persisted into the last 10 to 15% of the planet's history and is likely ongoing. Because surfaces as young as a few hundred million years have reached crater saturation equilibrium at D < ~60 to 100 m, Mars is likely to have widespread impact-produced regoliths at least a few meters deep, and this may contribute to the widespread mobile dust and boulder fields of Mars.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号