首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An unstable arch model of a solar flare
Authors:Daniel S Spicer
Institution:(1) E. O. Hulburt Center for Space Research, U.S. Naval Research Laboratory, 20546 Washington, D.C., U.S.A.;(2) Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 20742 College Park, Md., U.S.A.
Abstract:The theoretical consequences of assuming that a current flows along flaring arches consistent with a twist in the field lines of these arches are examined. It is found that a sequence of magneto-hydrodynamic (MHD) and resistive MHD instabilities driven by the assumed current (which we refer to as the toroidal current) can naturally explain most manifestations of a solar flare.The principal flare instability in the proposed model is the resistive kink (or tearing mode in arch geometry) which plays the role of thermalizing some of the field energy in the arch and generating X-configured neutral points needed for particle acceleration. The difference between thermal and nonthermal flares is elucidated and explained, in part, by amplitude-dependent instabilities, generally referred to as overlapping resonances. We show that the criteria for the generation of flare shocks strongly depend on the magnitude and gradient steepness of the toroidal current, which also are found to determine the volume and rate of energy release. The resulting model is in excellent agreement with present observations and has successfully predicted several flare phenomena.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号