An early estimate for the size of cycle 23 |
| |
Authors: | Robert M. Wilson |
| |
Affiliation: | (1) Space Science Laboratory, ES52, NASA Marshall Space Flight Center, 35812 Huntsville, AL, U.S.A. |
| |
Abstract: | Two features are found in the modern era sunspot record (cycles 10–22: ca. 1850-present) that may prove useful for gauging the size of cycle 23, the next sunspot cycle, several years ahead of its actual onset. These features include an inferred long-term increase against time of maximum amplitude (RM, the maximum value of smoothed sunspot number for a cycle) and the apparently inherent differing natures of even- and odd-numbered sunspot cycles, especially when grouped consecutively as even-odd cycle pairs. Concerning the first feature, one finds that 6 out of the last 6 sunspot cycles have had RM 110.6 (the median value for the modern era record) and that 4 out of 6 have had RM > 150. Presuming this trend to continue, one anticipates that cycle 23 will likewise have RM 110.6 and, perhaps, RM > 150. Concerning the second feature, one finds that, when one groups sunspot cycles into consecutively paired even-odd cycles, the odd-following cycle has always been the larger cycle, 6 out of 6 times. Because cycle 22 had RM = 158.5, one anticipates that cycle 23 will have RM > 158.5. Additionally, because the average difference between RM(odd) and RM(even) for consecutively paired even-odd cycles is 40.3 units (sd = 14.2), one expects cycle 23 to have RM 162.3 (RM = 198.8 ± 36.5 at the 95% level of confidence). Further, because of the rather strong linear correlation (r = 0,959, se = 13.5) found between RM(odd) and RM(even) for consecutively paired even-odd cycles, one infers that cycle 23 should have RM 176.4 (RM = 213.9 ± 37.5 at the 95% level of confidence). Since large values of RM tend to be associated with fast rising cycles of short ascent duration and high levels of 10.7-cm solar radio flux, cycle 23 is envisioned to be potentially one of the greatest cycles of the modern era, if not the greatest. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|