首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flux expulsion by inhomogeneous turbulence
Authors:L Tao  M R E Proctor  & N O Weiss
Institution:Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge University, Cambridge CB3 9EW
Abstract:Flux expulsion is an important consequence of the interaction of magnetic fields with fluid convection and has been well studied for particular cases of steady, single-cell flows. Here we examine a related phenomenon in inhomogeneous turbulence using direct numerical simulations. To understand our numerical results, we analyse average properties of our model, and obtain mean transport coefficients which can be used to describe the approach of the system to its final state. For the kinematic problem these transport coefficients give an excellent prediction of the expulsion process; however, the enhanced transport is suppressed by dynamical back-reaction of the Lorentz force. Finally, we discuss the astrophysical implications for magnetic fields in stellar convection zones. Segregation of magnetic fields from turbulent motion not only allows strong toroidal fields to accumulate in regions of convective overshoot but also permits significant poloidal fields to be maintained by dynamo action in stars like the Sun.
Keywords:diffusion  MHD  turbulence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号