首页 | 本学科首页   官方微博 | 高级检索  
     


Monte Carlo simulations of star clusters — I. First Results
Authors:Mirek Giersz
Affiliation:N. Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland
Abstract:A revision of Stodoíkiewicz's Monte Carlo code is used to simulate evolution of star clusters. The new method treats each superstar as a single star and follows the evolution and motion of all individual stellar objects. The first calculations for isolated, equal-mass N -body systems with three-body energy generation according to Spitzer's formulae show good agreement with direct N -body calculations for N  = 2000, 4096 and 10 000 particles. The density, velocity, mass distributions, energy generation, number of binaries, etc., follow the N -body results. Only the number of escapers is slightly too high compared with N -body results, and there is no level-off anisotropy for advanced post-collapse evolution of Monte Carlo models as is seen in N -body simulations for N  ≤ 2000. For simulations with N  > 10 000 gravothermal oscillations are clearly visible. The calculations of N   2000, 4096, 10 000, 32 000 and 100 000 models take about 2, 6, 20, 130 and 2500 h, respectively. The Monte Carlo code is at least 105 times faster than the N -body one for N  = 32 768 with special-purpose hardware. Thus it becomes possible to run several different models to improve statistical quality of the data and run individual models with N as large as 100 000. The Monte Carlo scheme can be regarded as a method which lies in the middle between direct N -body and Fokker–Planck models and combines most advantages of both methods.
Keywords:methods: numerical    stars: kinematics    globular clusters: general
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号