首页 | 本学科首页   官方微博 | 高级检索  
     


Ar,N2, and CO2 in the structural cavities of cordierite,an optical and X-ray single-crystal study
Authors:Thomas Armbruster
Affiliation:1. Laboratorium für chemische und mineralogische Kristallographie, Universit?t Bern, Freiestr. 3, CH-3012, Bern, Switzerland
Abstract:Ar, N2 and CO2 were introduced into the structural cavities of channel-evacuated single-crystals of White Well cordierite with the composition: K0.01Na0.03(Mg1.91Fe0.09Mn0.01)Al3.98Si5.01O18. The gas refilling experiments were carried out in conventional hydrothermal bombs at 6–7 kbar and 600–700°C. The increase in the mean refractive indices for gas-treated crystals, as determined with a spindle-stage equipped microscope, was used along with point-dipole calculations to estimate the percentage of occupied structural cavities. The steep increase of the electronic polarizability parallel to the a-axis, which can be derived from the increase of the refractive index n γ (Z∥a) upon introduction of volatiles, indicates that N2 and CO2 are preferentially aligned parallel to the a-axis of cordierite. Single-crystal structure refinements at room temperature confirm these predictions. Additionally, decreased C–O and N–N bond lengths suggest a librational motion with a mean rotary oscillation angle of 35° (N2) and 25° (CO2) about a, where c is the rotation axis. Mean libration angles of 40° (N2) and 28° (CO2) were estimated from the electronic polarizability tensors of CO2 and N2. Site occupancy refinements of the channel position are in good agreement with the optically derived values for the volatile concentrations, both indicating about 70% and 60% filled cavities for Ar- and N2-cordierite, respectively. Chemical analyses and point-dipole calculations confirm that about 45% of the cavities are occupied in the CO2-treated crystal. The structural framework of cordierite is slightly but specifically altered by the various channel occupants.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号