首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A single numerically efficient equation for approximating the Mohr–Coulomb and the Matsuoka–Nakai failure criteria with rounded edges and apex
Authors:Andrea Panteghini  Rocco Lagioia
Institution:DICATAM, University of Brescia, , Brescia, Italy
Abstract:This paper presents a novel formulation for defining soil failure. It plots in the principal stress space as a surface with the shape ranging between an approximation of the Matsuoka–Nakai and of the Mohr–Coulomb criteria depending on the value of a single parameter. The new function can be used as a replacement of the original equations of these well‐established criteria for implementing in a program for numerical analyses, and it is particularly effective for approximating the Matsuoka–Nakai criterion. Both the Mohr–Coulomb and the Matsuoka–Nakai failure criteria present numerical difficulties during implementation and also at run‐time. In the case of the Matsuoka–Nakai, the new formulation plots in the first octant only, whereas the original criterion plots in all octants, which causes severe convergence problems particularly for those Gauss points with low stress state, such as those on the side of a shallow footing. When the shape parameter is set to reproduce the Mohr–Coulomb failure criterion, on the other hand, the new formulation plots as a pyramid with rounded edges. Moreover, as the new function is at least of class C2, the second derivatives are continuous, thus ensuring quadratic convergence of the Newton's method used within the integration scheme of the constitutive law. The proposed formulation can also provide both sharp and rounded apex of the surface at the origin of the stress space by setting accordingly one additional parameter. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:failure criterion  Mohr–  Coulomb  Matsuoka–  Nakai  singularity  finite elements
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号