首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals
Authors:Ronald E Yoder  Robert S Freeland  John T Ammons  Leroy L Leonard
Abstract:Offsite movement of waterborne agrochemicals is increasingly targeted as a non-point source of water quality degradation. Our research has indicated that subsurface water movement is variable and site-specific, and that a small soil volume frequently conducts a large volume of flow. This concentrated flow is usually caused by soil morphology, and it often results in water moving rapidly offsite from certain areas of fields; little or no lateral subsurface flow may occur in other areas. Identifying these subsurface regions is difficult using conventional soil survey and vadose zone sampling techniques. In this study, traditional surveying is combined with electromagnetic induction (EMI) and ground-penetrating radar (GPR) mapping to identify areas with high potential for subsurface offsite movement of agrochemicals, optimizing these identification techniques, and expanding the mapping procedures to make them useful at the field-scale for agricultural production practices. Conclusions from this research are: (1) EMI mapping provides rapid identification of areas of soil with a high electrical conductivity and presumably high potential for offsite movement of subsurface water, (2) GPR mapping of areas identified by EMI mapping provides a means to identify features that are known to conduct concentrated lateral flow of water, and (3) combining the capabilities of EMI and GPR instrumentation makes possible the surveys of large areas that would otherwise be impossible or unfeasible to characterize.
Keywords:Agriculture  Agrochemicals  EM induction  Ground-penetrating radar  Global positioning systems  Soil spatial variability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号