首页 | 本学科首页   官方微博 | 高级检索  
     


An improved methodology for filling missing values in spatiotemporal climate data set
Authors:Antti Sorjamaa  Amaury Lendasse  Yves Cornet  Eric Deleersnijder
Affiliation:(1) Department of Neurology, UCLA Laboratory of Neuro Imaging, David Geffen School of Medicine, Suite 225, 635 Charles Young Drive South, Los Angeles, CA 90095-7334, USA;;
Abstract:In this paper, an improved methodology for the determination of missing values in a spatiotemporal database is presented. This methodology performs denoising projection in order to accurately fill the missing values in the database. The improved methodology is called empirical orthogonal functions (EOF) pruning, and it is based on an original linear projection method called empirical orthogonal functions (EOF). The experiments demonstrate the performance of the improved methodology and present a comparison with the original EOF and with a widely used optimal interpolation method called objective analysis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号