首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorus retention in constructed wetlands enhanced by zeolite- and clinopyroxene-dominated lava sand
Authors:Christine Alewell  Jen-How Huang  Timothy I. McLaren  Lea Huber  Else K. Bünemann
Affiliation:1. Environmental Geoscience, University of Basel, Basel, Switzerland;2. Department of Environmental Systems Science, ETH Zurich, Lindau, Switzerland;3. Department of Environmental Systems Science, ETH Zurich, Lindau, Switzerland

Department of Environmental Sciences, Research Institute of Organic Agriculture, FiBL, Frick, Switzerland

Abstract:Constructed wetlands (CWs) are engineered systems for treating wastewater by sequestering nutrients and contaminants. Our aim was to assess the main phosphorus (P) binding states in operating CWs to assess P saturation and indications on P recycling potential of filter materials, which might be necessary under future peak P scenarios. The investigated vertical flow CWs (operation time up to 16 years) are based on either fluviatile (Fluv) sand or zeolite- (Ze-LS) and clinopyroxene (Cl-LS)-dominated lava sand. Organic and inorganic P accumulated in all CWs independent of filter materials and showed a considerable increase with operation time. Concentrations of P decreased sharply with depth in the Fluv-CWs compared to only a slight decrease in the lava sand CWs, with P concentrations of deeper horizons approximating the relatively P enriched original lava sand substrates. Orthophosphate was the dominant pool in all CWs, while the sum of organic fractions ranged between 11% and 33%. Sequential extraction indicated that P was mainly associated with Fe and Al (hydr)oxides for Fluv-CWs and Ze-LS-CWs, while Ca and Mg bound mineral phosphates dominated in Cl-LS-CWs. Oxalate extractions pointed to a clear dominance of P fractions associated with poorly crystalline Fe- and Al-(oxy)hydroxides. Solution 31P NMR analyses revealed that inositol hexakisphosphates were a major pool of organic P in surface layers of CWs, which increased with operation time. With a maximum of 0.5% P content, filter sands do not appear to be a suitable fertilizer for direct application to agricultural fields. The dominance of inorganic, poorly crystalline P species point to potentially high desorption capacity which might be investigated further, to assess recycling potential of P or usage of filter materials as soil amendments with relatively high plant available P. The latter might become feasible and economically attractive under future P scarcity. Simultaneously, P saturation indexes (DPS) did not indicate an imminent P saturation of filters, since P accumulation was not restricted by binding to Al and Fe minerals.
Keywords:filter materials  NMR spectroscopy  organic P species  P recycling  P saturation  sequential P extraction  vegetated soil filters  waste water cleaning
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号