首页 | 本学科首页   官方微博 | 高级检索  
     


Morphology and evolution of supraglacial hummocks on debris-covered Himalayan glaciers
Authors:Oliver T. Bartlett  Felix S.L. Ng  Ann V. Rowan
Affiliation:1. College of Life and Environmental Sciences, University of Exeter, Exeter, UK;2. Department of Geography, University of Sheffield, Sheffield, UK
Abstract:Thick supraglacial debris layers often have an undulating, hummocky topography that influences the lateral transport of debris and meltwater and provides basins for supraglacial ponds. The role of ablation and other processes associated with supraglacial debris in giving rise to this hummocky topography is poorly understood. Characterizing hummocky topography is a first step towards understanding the feedbacks driving the evolution of debris-covered glacier surfaces and their potential impacts on mass balance, hydrology and glacier dynamics. Here we undertake a geomorphological assessment of the hummocky topography on five debris-covered glaciers in the Everest region of the central Himalaya. We characterize supraglacial hummocks through statistical analyses of their vertical relief and horizontal geometry. Our results establish supraglacial hummocks as a distinct landform. We find that a typical hummock has an elongation ratio of 1.1:1 in the direction of ice flow, length of 214 ± 109 m and width of 192 ± 88 m. Hummocky topography has a greater amplitude across-glacier (15.4 ± 10.9 m) compared to along the glacier flow line (12.6 ± 8.3 m). Consequently, hummock slopes are steeper in the across-glacier direction (8.7 ± 4.3°) than in the direction of ice flow (5.6 ± 4.0°). Longer, wider and higher-amplitude hummocks are found on larger glaciers. We postulate that directional anisotropy in the hummock topography arises because, while the pattern of differential ablation driving topography evolution is moderated by processes including the gravitational redistribution of debris across the glacier surface, it also inherits an orientation preference from the distribution of englacial debris in the underlying ice. Our morphometric data inform future efforts to model these interactions, which should account for additional factors such as the genesis of supraglacial ponds and ice cliffs and their impact on differential ablation.
Keywords:ablation  debris  glacier  Himalaya  topography
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号