Affiliation: | aDepartment of Geological Sciences, Faculty of General Education, Gifu University, 1-1 Yanagido, Gifu City 501-11, Japan bDepartment of Earth and Planetary Sciences, Faculty of Education, Gifu University, 1-1 Yanagido, Gifu City 501-11, Japan |
Abstract: | Based on a block structure model of the inner belt of central Japan, an examination was conducted of the space-time distribution patterns of destructiv magnitudes M 6.4 or greater (M =Japan Meteorological Agency Scale). The distribution patterns revealed a periodicity in earthquake activit seismic gaps. Major NW—SE trending left-lateral active faults divide the inner belt of central Japan into four blocks, 20–80 km wide. The occurrenc A.D. with M ≥ 6.4, which have caused significant damage, were documented in the inner belt of central Japan. The epicenters of these earthquakes close to the block boundaries. Using the relationship between the magnitude of earthquakes which occurred in the Japanese Islands and the active length of faults that generated them, movement is calculated for each historical earthquake. Space—time distributions of earthquakes were obtained from the calculated lengths, the latitud of generation. When an active period begins, a portion or segment of the block boundary creates an earthquake, which in turn appears on the ground surf active period ends when the block boundary generates earthquakes over the entire length of the block boundary without overlapping. Five seismic gaps with fault lengths of 20 km or longer can be found in the inner belt of central Japan. It is predicted that the gaps will generate ea magnitudes of 7.0. These data are of significance for estimating a regional earthquake risk over central Japan in the design of large earthquake resist The time sequences of earthquakes on the block boundaries reveal a similar tendency, with alternating active periods with seismic activity and quiet pe activity. The inner belt of central Japan is now in the last stage of an active period. The next active period is predicted to occur around 2500 A.D. |