首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Specification and prediction of nickel mobilization using artificial intelligence methods
Authors:Raoof Gholami  Mansour Ziaii  Faramarz Doulati Ardejani  Shahoo Maleki
Institution:1. Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
Abstract:Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号