首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fundamental study for morphodynamic modelling: Sand mounds in oscillatory flows
Authors:PK Stansby  J Huang  DD Apsley  MI García-Hermosa  AGL Borthwick  PH Taylor  RL Soulsby
Institution:1. School of Mechanical, Civil and Aerospace Engineering, University of Manchester, Manchester M60 1QD, UK;2. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK;3. HR Wallingford, Wallingford OX10 8BA, UK
Abstract:Experiments on sand mounds in oscillatory flow, undertaken in controlled, large-scale laboratory conditions, have produced well-defined data sets for model comparison. Three bathymetries with different levels of submergence, including a surface-piercing case, were tested. The maximum slope was about 1:5.5. Sediment transport is due to bed load with ripple formation. The principal time-dependent bulk parameters are the vertical distance of the centre of gravity above the base and the volume of the mound. A semi-implicit finite-volume depth-averaged hydrodynamic model is used to drive morphodynamics, using van Rijn's sediment flux model generalized to take account of bed slope, and some justification is given for depth-averaged modeling in these conditions. Starting the model runs with the conditions at the end of the first cycle avoided initial atypical physical behaviour. In general good predictions were obtained with an angle of repose reduced from the standard value of about 30° for stationary beds to 15°. For these situations, morphodynamics was largely unaffected by a hydrodynamic roughness height in the range 2.5D50 to 51D50, with larger values accounting for ripple roughness. The reduced angle of repose may be physically expected with mobile beds but this specific value is only expected to be suited to this form of bed motion. In one case an exaggerated ripple formed near the top of the mound reducing agreement with experiment. For the submerged case with normal ripple structure excellent predictions were obtained. For the initially surface-piercing mound, the time of submergence was better predicted with a 30° angle of repose, presumably due to the prominent influence of the near stationary bed near the wet/dry interface, although long term predictions were better predicted with 15°. The occurrence of vortex shedding in the first cycle modeled was in agreement with experimental observation.
Keywords:Modelling  Sediment transport  Bed load  Bed slope  Sand mound
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号