首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机(SVM)单目标SAR图像分割
引用本文:黄亮,舒宁. 基于支持向量机(SVM)单目标SAR图像分割[J]. 地理空间信息, 2011, 9(1): 60-62,65
作者姓名:黄亮  舒宁
作者单位:武汉大学遥感信息工程学院;
基金项目:湖北省自然科学基金资助项目(2006ABD003)
摘    要:将考虑SAR图像局部灰度均值和方差及像素空间分布特征等统计量,以灰度共生矩阵产生的纹理统计量为特征向量,经过归一化后进行特征选择,然后输入到支持向量机中进行训练建模,利用支持向量机分类方法,以实现分割结果.最后,将此方法分类结果与传统方法进行了比较,从对比结果可以看出此方法行之有效.

关 键 词:SAR图像  灰度共生矩阵  图像分割  支持向量机

Single Objective Segmentation of SAR Images Based on Support Vector Machine(SVM)
HUANG Liang,SHU Ning. Single Objective Segmentation of SAR Images Based on Support Vector Machine(SVM)[J]. Geospatial Information, 2011, 9(1): 60-62,65
Authors:HUANG Liang  SHU Ning
Affiliation:Huang liang
Abstract:In this paper,some SAR image Statistics indice were considered such as the local gray mean,variance and the spatial distribution characteristics of pixel.Then,the texture statistics from GLCM was taken as features and was normalized,for which feature selection was carried on.In the end,the support vector machine training model(SVM) was constructed,the segmentation was achieved by SVM.This method of classification were compared with the traditional method by test,it showed that it was more effective.
Keywords:SAR  image segmentation  GLCM  support vector machines  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号