首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A dynamic programming model for optimal planning of aquifer storage and recovery facility operations
Authors:V Uddameri
Institution:(1) MSC 213 Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
Abstract:Aquifer storage recovery (ASR) is an innovative technology with the potential to augment dwindling water resources in regions experiencing rapid growth and development. Planning and design of ASR systems requires quantifying how much water should be stored and appropriate times for storage and withdrawals within a planning period. A monthly scale planning model has been developed in this study to derive optimal (least cost) long-term policies for operating ASR systems and is solved using a recursive deterministic dynamic programming approach. The outputs of the model include annual costs of operation, the amount of water to be imported each month as well as the schedule for storage and extraction. A case study modeled after a proposed ASR system for Mustang Island and Padre Island service areas of the city of Corpus Christi is used to illustrate the utility of the developed model. The results indicate that for the assumed baseline demands, the ASR system is to be kept operational for a period of 4 months starting from May through August. Model sensitivity analysis indicated that increased seasonal shortages can be met using ASR with little additional costs. For the assumed cost structure, a 16% shortage increased the costs by 1.6%. However, the operation time of ASR increased from 4 to 8 months. The developed dynamic programming model is a useful tool to assess the feasibility of evaluating the use of ASR systems during regional-scale water resources planning endeavors.
Keywords:ASR  Aquifer recharge  Optimization  Coastal aquifers  Sustainability  Texas  USA
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号